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Mutual Information of Ising Systems 
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We obtain the mutual information of Ising systems, which shows singular behavior 
near the critical point. We connect the mutual information with the magnetization 
and the correlation function. The mutual information is a suitable measure for 
the critical behavior of Ising systems. 

I. INTRODUCTION 

Let AB be a joint system consisting of individual systems A and B. If 
A has states { et } and B has states { 13 }, AB has joint states { ctl3 }. The probability 
distributions of  these systems are given by 

= = 

where p~ and p~ denote the probabilities that A is in ct and B is in 13, 
respectively, and p ~  denotes the joint probability that AB is in ct13. The 
mutual information (Shannon, 1948) between A and B is defined by 

IM(A :B)  = Sa + $8 - gAB (2) 

where St (SB) is the individual entropy of A (B) and SAS is the joint entropy 
of AB as follows: 

Sa = - 2  P~ log p~, Sn = - ~  p~ log p~ (3) 

San = - ~ ]  p ~  log pA~ (4) 
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Equation (2) can be applied, e.g., to complex systems and used in measuring 
complexity (Grassberger, 1986; Wackerbauer et al., 1994). 

The mutual information means the common information of two systems 
which has the property 

S A if S A ¢:Q S B 
O <- IM(A " B) <-- Sn if S s < S A  (5) 

The condition of independent joint probability 

p ~  = p~pg (6) 

leads to 1M(A : B) = 0. If one system is completely dependent on the other 
system, IM(A : B) takes its maximum. Thus the mutual information can be 
considered as a measure of dependence like the correlation function. As for 
the difference between the mutual information and the correlation function 
(Fraser and Swinney, 1986; Fraser, 1989; Li, 1990), it should be noted that 
while the correlation function is only the measure of the linear dependence, 
the mutual information provides the general dependence between two systems. 

In this paper we apply the mutual information to Ising systems in order 
to see the effect of a phase transition, by considering joint states of two spin 
systems. The behavior of the mutual information can be estimated from the 
relation to the magnetization and the correlation function. It turns out that 
the value of the mutual information is strongly dependent on the values of 
the individual entropies for the variation of the temperature, as given by the 
inequality (5). This constraint yields an interesting feature of the mutual 
information in terms of the temperature which characterizes the phase transi- 
tion of spin systems. 

In the next section, we give formulas for the mutual information for 
lsing systems. In Section 3, we show that the mutual information has a 
characteristic feature near the critical temperature. Section 4 is devoted to 
our conclusions. 

2. MUTUAL INFORMATION OF ISING SYSTEMS 

Let us consider a d-dimensional square lattice with L a sites. The Hamilto- 
nian is given by 

H = - ~  sisj (7) 
(ij> 

where si is a spin variable which takes the values _ t, and (ij) goes over all the 
nearest neighbor pairs on the lattice. The system depends on the temperature T 
through the Boltzmann weight factor exp( -H/kT) ,  where k is the Boltzmann 
constant. Here we use units such that of k = 1, for the sake of simplicity. 
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To this system we apply the mutual information in the following manner. 
Let p~ (s = 1', ,t) be the probability for the spin state s on the whole lattice, 

NT N, 
(8) 

P~ N~ + N, P~ N~ + N+ 

where NT (N~) is the number of up (down) spins. Moreover, we assign the 
probability Ps.~'(l) (s, s' = t, ~,) to the joint state s s '  of two spins specified 
by the distance l as follows: 

with 

NT~(/) N~(I) NT~(l) 
Ptr(l) - N ' p ~ ( l )  - N ' pT~(I) = p~r ( l )  - N (9) 

N = N~t(/) + N~(/) + 2NT~(/) 

where NTT(/), N ~ ( I ) ,  and NT~(/) are the numbers of the up-up pairs, down-  
down pairs, and up-down pairs, respectively. These probabilities are con- 
nected through the relation 

Ps = ~] Psi'(/) = ~] P~'s(/) (10) 
$1 $, 

The mutual information between the two spins can be defined by 

IM( l )  = --2 ~] m log Ps + ~ Psi'(/) log p.,(/) (1 1) 
S S , S  I 

We can easily see that this quantity (11) falls to zero with increase of l, 
because the joint probability becomes independent following condition (6) 
for larger l. We also get IM(/) = 0 in both limits T --4 0o and T ~ 0. 

Now let us obtain the relation of the mutual information (11) to the 
magnetization M and the correlation function F(/). Since they are defined as 

M = ~ sp~ (12) 
S 

and 

F(/) = ~ s s ' p . , ( l )  (13) 
S,S I 

by using the normalization condition Es Ps = E.,.s' P.~.~' = I, we have the 
following expressions: 

I + M  1 - M  
(14) 

PT - 2 ' Pz - 2 
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and 

1 + 2 M  + F(I )  
Ptt(l) = 4 

1 - 2 M  + F ( / )  
p~( l )  = 4 

1 - F ( / )  
Pt+(/) = P~t(/) - 4 (15) 

Inserting (14) and (15) into equation (11), we have 

I 
IM(l) = ~ log (1 -- MZ) 4 

(1 - F( / ) )2(1  - 2 M  + F ( / ) ) (1  + 2 M  + F ( / ) )  

+ M log 
2 

(1 - M)2(1  -k- 2 M  + ['(/)) 

(1 + M)Z(1 - 2M + F(/)) 

F(/) (1 + 2M + F(/))(I - 2M + F(/)) 
+ 4 log (1 - F(/)) 2 (16) 

This relation yields the characteristic behavior of  l M (l). For example, it follows 
that when T is above the critical temperature, where M = 0 and F(/) is small, 
IM(/) behaves like 

IM(/)---~F(I) ~ - ~ e x p  - (17) 

where ~ is the correlation length. 

3. S INGULARITY OF THE MUTUAL INFORMATION 

In order to see the behavior of the mutual information around the critical 
temperature To, we perform the differentiation of equation (16) with respect 
to T. In the region of just below T~ we have power-low behavior of  the 
magnetization, i.e., M -- (T,. - T)~, where ~ is the critical index. The results 
are given for T > T~. and T < T~ as follows: 

OIM(I) _ I OF(/) log 1 + F(/) < 0 (T > T~.) (18) 
OT 2 0T 1 F(/) 

and 

OIM(I) 
- '~ T--~Tc fS(Tc - T)Zf~-llr__,rc---> +oo ( T <  Tc, 13< 1/2) (19) 
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Since 0 < F < 1 and aF/aT < 0, equation (18) is negative. Equation (19) 
is valid if 13 < I/2. The theoretical study of critical indices gives 13 = 1/8 
for d = 2 and 13 = 0.31 for d = 3 (Wilson and Kogut, 1974). Therefore, 
we see in both cases that the mutual information has a sharp peak at the 
critical temperature, which shows the singular behavior of the spin systems. 

Figure 1 shows the temperature dependence of IM(l) calculated for 64 
x 64 lattice, where l = 1. The peak position is slightly shifted from the 
critical temperature (7~-c ~ = 0.441) because of the finite-size effect. In addition, 
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Fig. 1. Dependence of  the mutual information (IM(I)) on the temperature T for a 64 x 
64 lattice, where I = I. 
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Fig. 2. Dependence of the mutual information (lM(l)) on the temperature T and the distance 
l for a 64 X 64 lattice. 

we show in Fig. 2 the dependence of the mutual information on the tempera- 
ture T and the distance 1. 

4. CONCLUSION 

In this paper we have applied the mutual information to Ising systems 
by considering joint states of two spin systems, and shown their characteristic 
behaviors as a function of the temperature. It turns out from the relation to 
the magnetization and the correlation function that the mutual information 
has a sharp peak at the critical temperature. Thus, we conclude that the 
mutual information can be used as the suitable measure for the phase transition 
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of spin systems, and furthermore for various systems in which probability 
distributions are defined definitely. 
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